Poincaré Embeddings of Spheres

نویسنده

  • JOHN R. KLEIN
چکیده

Given a 1-connected Poincaré duality space M of dimension 2p, with p > 2, we give criteria for deciding when homotopy classes S −→ M are represented by framed Poincaré embedded p-spheres.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Poincaré Duality Embeddings and Fiberwise Homotopy Theory

We prove an embedding theorem for maps from a finite complex into a Poincaré duality space. The proof uses fiberwise homotopy theory.

متن کامل

Poincaré Duality Embeddings and Fibrewise

We prove a relative Poincaré embedding theorem for maps of pairs into a Poincaré pair. This result has applications: it is the engine of the compression theorem of the author’s paper in Algebr. Geom. Topol. 2, (2002) 311–336, it yields a Poincaré space version of Hudson’s embedding theorem, and it can be used to equip 2-connected Poincaré spaces with handle decompositions.

متن کامل

An Open Collar Theorem for 4-manifolds

Let M4 be an open 4-manifold with boundary. Conditions are given under which M4 is homeomorphic to <9Afx[0, 1). Applications include a 4-dimensional weak /¡-cobordism theorem and a classification of weakly flat embeddings of 2-spheres in 5"*. Specific examples of (n-2)-spheres embedded in S" (including n = 4) are also discussed.

متن کامل

Geometric implications of the Poincaré inequality

The purpose of this work is to prove the following result: If a doubling metric measure space supports a weak (1, p)–Poincaré inequality with p sufficiently small, then annuli are almost quasiconvex. We also obtain estimates for the Hausdorff s–content and the diameter of the spheres. Mathematics Subject Classification (2000). Primary 46E35; Secondary 31C15.

متن کامل

The Erwin Schrr Odinger International Institute for Mathematical Physics Spheres and Hemispheres as Quantum State Spaces Spheres and Hemispheres as Quantum State Spaces

Spheres and hemispheres allow for their interpretation as quantum states spaces quite similar as it is known about projective spaces. Spheres describe systems with two levels of equal degeneracy. The geometric key is in the relation between transition probability and geodesics. There are isometric embeddings as geodesic submanifolds into the space of density operators assuming the latter is equ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009